Cancer progression and response to therapy are inextricably reliant on the co-evolution of a supportive tissue microenvironment. This is particularly evident in pancreatic ductal adenocarcinoma (PDAC), a tumor type characterized by expansive and heterogeneous stroma. Herein, we employed single cell RNAseq and spatial transcriptomics of normal, inflamed, and malignant pancreatic tissues to contextualize stromal dynamics associated with disease and treatment status, identifying temporal and spatial trajectories of fibroblast differentiation. Using analytical tools to infer cellular communication, together with a newly developed assay to annotate genomic alterations in cancer cells, we additionally explored the complex intercellular networks underlying tissue circuitry, highlighting a fibroblast-centric interactome that grows in strength and complexity in the context of malignant transformation. Our study yields new insights on the stromal remodeling events favoring the development of a tumor-supportive microenvironment and provides a powerful resource for the exploration of novel points of therapeutic intervention in PDAC.