Background: With the increased availability of licensed vaccines for respiratory viruses such as severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus (RSV), and influenza virus, a better understanding of the viral aetiology of severe acute respiratory infections (SARI) among children could help in optimising the use of these vaccines. We conducted a study among children aged <5 years hospitalised with SARI at a tertiary care children's hospital in north India and tested for common respiratory pathogens.
Methods: We randomly enrolled eligible SARI cases aged <5 years from August 2013 to July 2015. SARI cases were defined as either <7-day history of fever with cough or in children aged eight days to three months, a physician diagnosis of acute lower respiratory infection requiring hospitalisation. We also enrolled an age-group matched control without any acute illness in a 2:1 ratio from the outpatient clinic within 24 hours of case enrolment. Nasopharyngeal and/or oropharyngeal swabs were collected and tested using TaqMan Array Cards, a real-time reverse transcription polymerase chain reaction-based multi-pathogen testing platform for selected respiratory viruses among the enrolled cases and controls. We compared the prevalence of each pathogen among cases and controls using the χ2 (χ2) or Fisher exact test (P < 0.05). We used logistic regression to estimate adjusted odds ratios (aORs) which were then used to calculate aetiologic fractions (EFs).
Results: We enrolled 840 cases and 419 outpatient controls. Almost half of the individuals in the whole sample were aged <6 months (n = 521, 41.4%). Females made up 33.7% of cases and 37.2% of controls. Viral detections were more common among cases (69%, 95% confidence interval (CI) = 66, 73) compared to controls (33%; 95% CI = 29, 38) (P < 0.01). RSV (n = 257, 31%; 95% CI = 28, 34%) was the most common virus detected among cases. Influenza A was detected among 24 (3%; 95% CI = 2, 4%), and influenza B among 5 (1%; 95% CI = 0, 1%) cases. The association between the virus and SARI was strongest for RSV (aOR = 23; 95% CI = 12, 47; EF = 96%). Antivirals were administered to 1% of SARI cases while 78% received antibiotics.
Conclusions: Using a multi-pathogen molecular detection method, we detected respiratory viruses among more than two-thirds of children aged <5 years admitted with SARI in the Delhi tertiary care children's hospital. The guidelines for preventing and managing SARI cases among children could be optimised further with the improved availability of antivirals and vaccines.
Copyright © 2024 by the Journal of Global Health. All rights reserved.