Thin or ultra-thin dielectric layers have been widely used in various applications such as capacitors, piezo-electrics, and solar cells. This study explains the mechanism and chemistry of creating nano- and micron-sized openings in atomic-layer-deposited aluminum oxide-based dielectric layers using the alkali metal salt selenization technique. The necessary components for this mechanism are excess methyl groups present in the dielectric layer, supply of selenium and alkali metals, and a minimum annealing temperature. It is shown and explained that to create openings in the dielectric layer, heavier alkali halide metal salts require less energy, or - in other words - a lower annealing temperature. The overall hypothesis is explained via a thermodynamic approach with supportive thermochemical reactions. Thus, an easy way to engineer the dielectric layer to form openings at low temperatures is presented, beneficial for various applications like photovoltaics, optoelectronics, or micro-electro-mechanical systems (MEMS).
Keywords: Enthalpy of the alkali-halide metal salts; Aluminum oxide based dielectric layer; Dimethlydiselenide; TD-GC-MS measurement; Thermochemistry.
© 2024. The Author(s).