Maternal air pollutant exposure inhibits fetal lung development. Diesel exhaust particles (DEP) are one of the most substantial contributors to particulate matter pollution. The effects of maternal DEP exposure on gut microbiota in mothers and offspring and fetal lung development remain unclear. In this study, time-dated pregnant Sprague Dawley rats received intranasal administration of 100 μL phosphate-buffered saline (PBS) or DEP (250 μg) in 100 μL PBS from gestational days 16-21. The dams were permitted to deliver vaginally at term. On postnatal days 0 and 7, gut microbiota was sampled from the lower gastrointestinal tract. The right lung and terminal ileum were harvested for histological, cytokine, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) analyses. On postnatal day 0, the dams exposed to DEP and rat offspring with maternal DEP exposure exhibited macrophages that phagocytized diesel particles and increased numbers of macrophages in the alveolar parenchyma. On postnatal days 0 and 7, the offspring of DEP-exposed dams exhibited significantly lower intestinal tight junction protein expression, higher lung 8-OHdG and cytokine levels, and substantial lung injury compared with the offspring of the control dams. No significant differences were observed in the microbiota composition and diversity between the control and DEP-exposed dams. Maternal DEP exposure altered the gut microbiota composition and diversity on postnatal days 0 and 7, with more significant effects observed in the offspring on postnatal day 7. Regarding the mechanism, lung injury in offspring may have been linked to altered gut microbiota communities and dysregulated metabolic pathways caused by maternal DEP exposure.
Keywords: 8-hydroxy-2′-deoxyguanosine; Cytokine; Diesel exhaust particles; Microbiota dysbiosis; Tight junction.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.