Bacillus velezensis S141 helps soybean establish specific symbiosis with strains of Bradyrhizobium diazoefficiens to form larger nodules and improve nitrogen fixation efficiency. In this study, we found that the dry weight of soybean roots increased significantly in the presence of S141 alone under drought conditions. Hence, S141 improved the root growth of soybean under limited water supply conditions. S141 can produce some auxin, which might be involved in the improved nodulation. Inactivating IPyAD of S141, which is required for auxin biosynthesis, did not alter the beneficial effects of S141, suggesting that the root growth was independent of auxin produced by S141. Under drought conditions, soybean exhibited some responses to resist osmotic and oxidative stresses; however, S141 was relevant to none of these responses. Although the mechanism remains unclear, S141 might produce some substances that stimulate the root growth of soybean under drought conditions.
Keywords: drought stress; plant growth-promoting rhizobacteria; soybean.
© The Author(s) 2024. Published by Oxford University Press on behalf of Japan Society for Bioscience, Biotechnology, and Agrochemistry.