Photophysical properties of three-coordinate heteroleptic Cu(I) β-diketiminate triarylphosphine complexes

Dalton Trans. 2024 Nov 18. doi: 10.1039/d4dt02681k. Online ahead of print.

Abstract

A series of heteroleptic copper(I) β-diketiminate triarylphosphine complexes is reported, having the general formula Cu(R1NacNacR2)(PPhX3), where R1NacNacR2 is a substituted β-diketiminate and PPhX3 is a triphenylphosphine derivative. A total of five different R1NacNacR2 ligands and three different triarylphosphines are used to assemble the nine complexes. The syntheses, X-ray crystal structures, cyclic voltammograms, and UV-vis absorption spectra of all compounds are described. Whereas most of the compounds are weakly luminescent or only luminesce at 77 K, the four complexes with the more sterically encumbered β-diketiminate ligands, with methyl or isopropyl substituents at the 2- and 6-positions of the N-phenyl rings, exhibit weak room-temperature photoluminescence with peaks between 519 and 566 nm and long excited-state lifetimes in the range of 15-70 μs. The sterically encumbering substituents in this subset have subtle effects on the UV-vis absorption maximum, which red shifts slightly as the steric bulk increases, as well as significant effects on the photoluminescence lifetime, which is observed to increase as the steric bulk is augmented. Substituents on the triarylphosphine also influence the excited-state dynamics in the bulky complexes, with the more electron-rich tris(4-methoxyphenyl)phosphine (PPhOMe3) giving longer-excited-state lifetimes compared to triphenylphosphine (PPh3) when the same R1NacNacR2 ligand is used.