Utilizing quantitative susceptibility mapping to differentiate primary lateral sclerosis from progressive supranuclear palsy: A case report

Neuropathology. 2024 Nov 18. doi: 10.1111/neup.13015. Online ahead of print.

Abstract

We report a patient who presented clinically with progressive supranuclear palsy (PSP) but was pathologically diagnosed as having primary lateral sclerosis (PLS) with magnetic resonance imaging (MRI) with a quantitative susceptibility mapping (QSM) protocol. A 70-year-old man was clinically diagnosed with PSP due to early falls and unresponsiveness to levodopa therapy. Postmortem pathological examination revealed mild loss of Betz cells, gliosis, and transactive response DNA binding protein of 43 kDa (TDP-43)-positive inclusions in the motor cortex, leading to the pathological diagnosis of PLS. To explore methods for differentiating PLS from PSP, ante-mortem QSM images were visually and quantitatively assessed for abnormal increases in magnetic susceptibility in the motor cortex. Prussian blue and Luxol fast blue combined with periodic acid-Schiff staining were also performed to understand the source of the susceptibility increases. QSM showed clear hyperintense signals in the motor cortex. Magnetic susceptibility in the motor cortex was higher in the PLS patient (Z = 4.7, p < 0.001) compared to normal controls and pathologically diagnosed PSP patients. Pathological examination of the region showed intracortical myelin loss, as well as iron deposition. Underlying pathological processes for the increased magnetic susceptibility include not only iron deposition but also intracortical myelin. Our case suggests that QSM is a potential tool to differentiate PLS from PSP, providing insights for accurate diagnosis and enhancing clinical decision-making.

Keywords: PLS; iron; magnetic susceptibility; myelin loss; quantitative susceptibility mapping.

Publication types

  • Case Reports