Tumor microtubes: A new potential therapeutic target for high-grade gliomas

J Neuropathol Exp Neurol. 2024 Nov 19:nlae119. doi: 10.1093/jnen/nlae119. Online ahead of print.

Abstract

High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.

Keywords: cell communication; glioblastoma; glioma; material transport; tumor microtubes.