Purpose: To develop a combined approach using shear wave elastography (SWE) and conventional ultrasound (US) to determine the extent of positive axillary lymph nodes (LNs) following neoadjuvant therapy (NAT) in breast cancer patients with nodal involvement.
Methods: This prospective, multicenter study was registered on the Chinese Clinical Trial Registry (ChiCTR2400085035). From October 2018 to February 2024, a total of 303 breast cancer patients with biopsy-proven positive LN were enrolled. The conventional US features of axillary LNs and SWE characteristics of breast lesions after NAT were analyzed. The diagnostic performances of axilla US, breast SWE, and their combination in detecting residual metastasis in axillary level III after NAT were assessed.
Results: Pathologically positive LN(s) in axilla level III were detected in 13.75% of cases following NAT. The kappa value for the axilla level with positive LN confirmed by surgical pathology and detected by US is 0.39 (p < 0.001). The AUC of conventional axilla US to determine the status of axilla level III LNs after NAT was 0.67, with a sensitivity of 51.52%, a specificity of 74.36%. The breast SWE displayed moderate performance for detecting residual metastasis in axilla level III following NAT, with an AUC of 0.79, sensitivity of 84.85%, and specificity of 74.36%. Compared to axilla US and breast SWE alone, the combination of axilla US with breast SWE achieved a stronger discriminatory ability (AUC, 0.86 vs 0.67 vs 0.79, p < 0.05, Delong's test) and precise calibration (X2 = 13.90, p = 0.085, HL test), with an improved sensitivity of 93.94% and a comparable specificity of 75.64%%.
Conclusions: SWE outperformed conventional US in identifying the axilla levels with nodal metastasis following NAT in patients with initially diagnosed positive axilla. Furthermore, combining breast SWE with axilla US showed good diagnostic performance for detecting residual metastasis in axilla level III after NAT.
Keywords: Axilla; Breast neoplasm; Elastography; Neoadjuvant therapy; Ultrasound.
© 2024. The Author(s).