Age-related hearing loss is a risk factor for mobility problems and falls, possibly due to poor access to spatial sounds or the higher allocation of attention required to listen, thereby reducing cognitive resources to support mobility. Introducing stabilizing spatial sounds or reducing cognitive load through hearing aids could possibly improve balance performance; however, evidence is mixed. Few studies have evaluated the effects of hearing aids and spatial sounds on balance during realistic, multisensory, dual-tasking conditions. This study used virtual reality to simulate a listening-while-balancing task in 22 older adults with normal hearing and 22 hearing aid users, tested with their aids on versus off. Participants performed a competing digits listening task (two, four digits) and a standing postural task, alone and in combination (dual task) under different visual, postural, and acoustical loads. Listening accuracy and postural outcomes (centre of pressure mean velocity, anterior-posterior standard deviation, medial-lateral standard deviation) were collected. With respect to listening accuracy, as expected, normal hearing adults had higher listening accuracy than those with hearing loss (aided better than unaided) and both groups performed better with eyes closed (vs. open) and under lower postural loads (firm vs. compliant). With respect to postural performance, hearing aids did not remarkably improve balance overall, with no effects on dual-task costs to posture. Other factors related to the complexity of the conditions (i.e., listening, visual, postural demands) differently influenced dual-task costs to posture in individuals with and without hearing loss. Overall, these results contribute to our understanding of how age-related hearing loss and hearing aids affect balance-related outcomes under realistic, complex, multisensory, multitasking conditions.
Keywords: Age-related hearing loss; Dual task; Hearing aids; Listening effort; Older adults; Standing Balance.
© 2024. The Author(s).