A comprehensive study of Z-DNA density and its evolutionary implications in birds

BMC Genomics. 2024 Nov 21;25(1):1123. doi: 10.1186/s12864-024-11039-x.

Abstract

Background: Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regulation. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, potentially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation.

Results: In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all avian species compared to other genomic regions. A negative correlation was observed between Z-DNA density and developmental time in birds, suggesting that species with shorter developmental periods tend to have higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of development in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, and genome size, highlighting the complex interactions between genome architecture and phenotypic characteristics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid binding, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity.

Conclusions: This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regulation, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these associations and explore the molecular mechanisms by which Z-DNA influences avian biology.

MeSH terms

  • Animals
  • Base Composition
  • Birds* / genetics
  • DNA, Z-Form* / genetics
  • DNA, Z-Form* / metabolism
  • Evolution, Molecular*
  • Genome
  • Genomics / methods
  • Nucleotide Motifs
  • Promoter Regions, Genetic

Substances

  • DNA, Z-Form