Cytokine of interferon-gamma (IFNγ) plays a vital role in the immune response against Mycobacteria tuberculosis (Mtb) infection, yet the specific function of T cells producing IFNγ in this process remains unclear. In this study, we first isolated IFNγ+CD3+ T cells induced by Mtb antigens using surface staining assays. which showed a strong ability to inhibit the growth of intracellular mycobacteria in macrophages. Peripheral blood mononuclear cells (PBMCs) from healthy individuals were then challenged with Bacillus Calmette-Guérin (BCG) or Mtb, respectively, to sort IFNγ-secreting T cells for mRNA sequencing to analyze the gene expression patterns. The results of the integrated data analysis revealed distinct patterns of gene expression between IFNγ+CD3+ T cells induced by the BCG vaccine and those induced by Mtb pathogens. Further, unlike Mtb-induced cells, BCG-induced IFNγ+CD3+ T cells expressed high levels of interleukin-2 (IL-2), which increased the frequencies of these cells and the production of effector cytokines IFNγ and IL-2. Our findings suggested that IFNγ+CD3+ T cells with high IL-2 expression presented potent effector functions to inhibit intracellular Mtb growth, while Mtb infection impaired IL-2 expression in IFNγ+CD3+ T cells.
Keywords: BCG; IFNγ-secreting T cells; IL-2; Mycobacterium tuberculosis; intracellular mycobacteria; mRNA sequencing.
Copyright © 2024 Zhu, Wang, Gu, Zhou, Wu, Xu, Yang, Cai, Shen, Lu and Wang.