The rise of antibiotic resistance poses a critical threat to global health, necessitating the development of novel antibacterial strategies to mitigate this growing challenge. Biomimetic materials, inspired by natural biological systems, have emerged as a promising solution in this context. These materials, by mimicking biological entities such as plants, animals, cells, viruses, and enzymes, offer innovative approaches to combat bacterial infections effectively. This review delves into the integration of biomimicry with materials science to develop antibacterial agents that are not only effective but also biocompatible and less likely to induce resistance. The study explores the design and function of various biomimetic antibacterial materials, highlighting their therapeutic potential in anti-infection applications. Further, the study provides a comprehensive summary of recent advancements in this field, illustrating how these materials have been engineered to enhance their efficacy and safety. The review also discusses the critical challenges facing the transition of these biomimetic strategies from the laboratory to clinical settings, such as scalability, cost-effectiveness, and long-term stability. Lastly, the study discusses the vast opportunities that biomimetic materials hold for the future of antibacterial therapy, suggesting that continued research and multidisciplinary collaboration will be essential to realize their full potential.
Keywords: antibacterial therapy; antibiotic resistance; bioinspired design; biomimetic materials.
© 2024 Wiley‐VCH GmbH.