Collagens are abundant structural proteins found in both mammalian and marine species, and attractive biomaterials used in various fields. Jellyfish collagen-based products have become increasingly popular because of their clinically proven health benefits such as the effects of skin wound healing and immune stimulation. To develop detection tools for jellyfish collagen, we generated four monoclonal antibodies, MCOL1, 2, 3, and 4, by immunizing mice with moon jellyfish collagen. The nucleotide and amino acid sequences of the variable regions of the monoclonal antibodies were determined. The antibody-binding kinetics toward collagens from moon jellyfish were evaluated using a surface plasmon resonance (SPR) biosensor, and the binding specificity was evaluated in comparison with binding to collagens from edible jellyfish, fish scales, and pig and cow skins. MCOL1, 3, and 4 specifically bound to moon jellyfish collagen, whereas MCOL2 bound to both moon and edible jellyfish collagens. Considering the results showing that the SPR responses of MCOL2 binding were greater than those seen with the other antibodies, MCOL2 could recognize the common and repetitive sequences of the two jellyfish collagens. Therefore, this monoclonal antibody will be most applicable for detecting jellyfish collagen.
Keywords: binding specificity; collagen; jellyfish; monoclonal antibody; surface plasmon resonance.