Few layers of graphene at small twist angles have emerged as a fascinating platform for studying the problem of strong interactions in regimes with a nearly quenched single-particle kinetic energy and nontrivial band topology. Starting from the strong-coupling limit of twisted bilayer graphene with a vanishing single-electron bandwidth and interlayer tunneling between the same sublattice sites, we present an exact analytical theory of the Coulomb interaction-induced low-energy optical spectral weight at all integer fillings. In this limit, while the interaction-induced single-particle dispersion is finite, the optical spectral weight vanishes identically at integer fillings. We study corrections to the optical spectral weight by systematically including the effects of experimentally relevant strain-induced renormalization of the single-electron bandwidth and interlayer tunnelings between the same sublattice sites. Given the relationship between the optical spectral weight and the diamagnetic response that controls superconducting T_{c}, our results highlight the relative importance of specific parent insulating phases in enhancing the tendency towards superconductivity when doped away from integer fillings.