Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor (TLR) and interleukin-1 receptor (IL-1R). A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we employed high-throughput screening to identify lasalocid-A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-Cas9 genetic screening, proteomics, and biochemical assays revealed that lasalocid-A directly binds to the MYD88 L265P protein, enhancing its interaction with the E3 ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid-A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the BCL2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.
Copyright © 2024 American Society of Hematology.