Widespread application of hydrazine results in serious harm on the natural environments and human health because of its highly toxic, mutagenic, carcinogenic and teratogenic properties. Hence, it is very emergent to develop a convenient and efficient method for detection of hydrazine existed in real environments and living organisms. In this work, a novel ratiometric fluorescent probe PKZ-IN from the natural monoterpenoid 2-hydroxy-3-pinanone was designed and synthesized to detect trace hydrazine. The detection performance of probe PKZ-IN for hydrazine was investigated, and the results showed that this probe possessed excellent performance including large Stokes shift (211 nm), fast response time (<30 s), remarkable emission shift (136 nm), and a wide pH range (5 -13). This probe was successfully used to detect hydrazine existed in three different soil samples (humus soil, sandy soil and loess soil). In addition, probe PKZ-IN was also used to prepare nanofibrous membrane for detecting gaseous hydrazine qualitatively and quantitively by the mobile phone platform. Furthermore, PKZ-IN was successfully applied in living organisms and plants imaging for detection of the residual hydrazine.
Keywords: 2-Hydroxy-3-pinanone; Hydrazine; Pyrimidine-carbazole fluorescent probe.
Copyright © 2024 Elsevier B.V. All rights reserved.