A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo)

Int J Biol Macromol. 2024 Nov 22;283(Pt 4):137724. doi: 10.1016/j.ijbiomac.2024.137724. Online ahead of print.

Abstract

Yellow tepal is a unique trait of the American lotus (Nelumbo lutea), and all yellow lotus cultivars in the market possess genetic material from the American lotus. However, the formation of yellow tepals in lotus and the genetic mechanism of their formation remain unclear. In this study, we identified a transposon DNA/hAT-Ac, located within the promoter region of an R2R3-MYB transcription factor, MYB12, by comparing the insertion patterns of transposons in the genomes of American and Asian lotus (Nelumbo nucifera). The transposon was found exclusively in yellow lotus cultivars and not in red or white lotus. The insertion of DNA/hAT-Ac facilitated the specific expression of MYB12 in the yellow lotus tepals. Transient expression in lotus tepals, dual-luciferase, and yeast one-hybrid assays demonstrated that MYB12 promotes the accumulation of carotenoids and flavonols by activating the expression of genes involved in carotenoid and flavonols biosynthesis, and it directly binds to the promoters of PSY and FLS. Our results indicated that the transposon DNA/hAT-Ac-mediated specific expression of MYB12 is crucial for the formation of yellow tepals in lotus, and the findings provide a theoretical basis for the breeding of yellow lotus cultivars.

Keywords: Carotenoids; Flavonols; Lotus (Nelumbo); MYB12; Transposon DNA/hAT-ac; Yellow tepal.