Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates WNT2 expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/WNT2 axis.
Keywords: Chi-let-7d-5p; Dermal papilla cells; Melatonin; WNT2; miRNA.
Copyright © 2024. Published by Elsevier Inc.