Dietary restriction (DR) extends lifespan in diverse species, from yeast to mammals. However, its underlying mechanisms are not well understood. In this study, through using the tractable model Caenorhabditis elegans, we show a role for the DEAD-box RNA helicase, DDX-23 (homologous to mammal DDX23) as a regulator of healthspan in response to dietary restriction. Meanwhile, DDX-23 is also required for heat and oxidative stress response in C. elegans. Intriguingly, DDX-23 functions in the germline during adult to regulate dietary restriction-induced longevity. We then find that PHA-4/FOXA acts downstream of DDX-23 to mediate the transcriptional response of SOD-related genes and consequently the lifespan of the animals. Furthermore, we find that the DEAD-box RNA helicase, DDX-23 negatively regulates the healthy lifespan extension by up-regulating the expression of miR-231, and resulting in suppressing the activation of FOXO transcription factor DAF-16. Our work shows a newly discovered for DEAD-box RNA helicase DDX-23 in the regulation of dietary restriction-mediated longevity in C. elegans and reveals the downstream transcriptional regulation mechanisms.
Keywords: DEAD-box RNA helicase DDX23; Dietary restriction; Healthspan; MiR-231/DAF-16; PHA-4/FOXA.
© 2024. The Author(s), under exclusive licence to American Aging Association.