Single sensors have been developed for specific gas detection in real-time environments, but their selectivity is limited by interference from other gases when considering mixtures of gases. Consequently, accurate detection of target gases in mixed gas environments is essential. Therefore, this study develops a sensor array approach to quantitatively estimate the concentration of carbon monoxide (CO) and nitrogen dioxide (NO2) gases in their binary mixture (CO and NO2). The sensor array consists of two different sensors, developed with zinc oxide and graphene-cobalt sulfide. The sensor array was tested in the presence of 29 different proportions of the binary mixture at room temperature. Subsequently, machine learning (ML) algorithms are applied on sensor signals to estimate the concentration of gases. The ML models unfortunately exhibited inaccurate prediction when all sensor signals were considered, therefore, to improve the prediction accuracy, the sensor signals were divided into three levels based on the mixed gas concentration regime. Interestingly, the classification and regression algorithms provided good classification accuracy (85.13 ± 3.2%) and reasonable predictions of target gas concentrations at three levels. The proposed computational framework can be extended to include additional gases in mixed gases and used in various applications, including automotive, industrial, and environmental monitoring.
Keywords: Air pollutants; Chemiresistive sensor array; Classification and regression; Low-cost gas sensors; Machine learning; Selectivity and cross-sensitivity.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.