The continuous evolution of bacteria and the formation of biofilm have exacerbated resistance issues, highlighting the urgent need for new antibacterial materials. In this study, L-fucose was polymerized to synthesize thiolated poly(2-(L-fucose) ethyl methacrylate) (PFEMA-SH), which was subsequently co-modified with α-amylase onto gold nanorods (GNR) to prepare the antibacterial nanoparticle composite, GNR-Amy-PFEMA (G-A-P). These nanomaterials exhibit both photothermal and enzymatic properties, enabling G-A-P to effectively sterilize and disperse biofilm. Under near-infrared light irradiation, the temperature of G-A-P composite increases significantly, leading to bacterial cell damage and biofilm disruption. The G-A-P composite demonstrated nearly 100 % eradication of planktonic bacteria after 5 min of irradiation and achieved a 70.9 % reduction in mature biofilm biomass, with a 3.37-log decrease in the number of bacteria within the biofilm. These composites display strong antimicrobial activity and hold great potential for the removal of Pseudomonas aeruginosa biofilm. Furthermore, the ability of G-A-P to reduce biofilm formation without the use of traditional antibiotics suggests that it may offer an antibiotic-free alternative for managing biofilm-related infections.
Keywords: Biofilm; Fucose-containing glycopolymer; Gold nanorods; Pseudomonas aeruginosa; α-amylase.
Copyright © 2024 Elsevier B.V. All rights reserved.