Liquid-to-solid phase transition of proteins with prion-like domains (PLDs) has been associated with neurodegenerative diseases and aging. High protein concentration is one important aspect triggering the transition; however, several prion-like proteins, including fibrillarin (FBL), an important phase-separated protein in the nucleolus for pre-rRNA processing, show relatively high expression levels in certain cells, especially cancer cells, without obvious phase transitions and growth arrest. How cells maintain prion-like protein proteostasis is still unknown. Here, we attempt to answer the question, with FBL as an example. We find that lncRNA DNAJC3-AS1 can buffer the behavior of FBL condensation and maintain the state and function of fibrillar component/dense fibrillar component (FC/DFC) units in human cell lines through two mechanisms, not only facilitating FBL condensation but also inhibiting excessive aggregation by binding multiple PLDs and partially blocking their interactions. We propose that lncRNAs could supply buffered systems to sustain functional phase states of prion-like proteins.
Keywords: aggregation inhibitor; fibrillarin; functional phase state; human cells; lncRNAs; nucleolar prion-like protein; phase transition; protein condensation; proteostasis.
Copyright © 2024 Elsevier Inc. All rights reserved.