Conserved glucokinase regulation in zebrafish confirms therapeutic utility for pharmacologic modulation in diabetes

Commun Biol. 2024 Nov 23;7(1):1557. doi: 10.1038/s42003-024-07264-5.

Abstract

Glucokinase (GCK) is an essential enzyme for blood glucose homeostasis. Because of its importance in glucose metabolism, GCK is considered an attractive target for the development of antidiabetic drugs. However, a viable therapeutic agent has still to emerge, prompting efforts to improve understanding of the complex regulation and biological effects of GCK. Using the vertebrate organism zebrafish, an attractive model to study metabolic diseases and pharmacological responses, we dissected the complexities of gck regulation and unraveled effects of Gck modulation. We found that while gck expression in zebrafish islet cells is constitutive, gck expression in the liver is regulated by nutritional status, confirming similarity to the mammalian system. A combination of transgenic gck reporter lines and our diabetes model, the pdx1 mutant, allowed monitoring of gck expression under pathological conditions, revealing reduced gck expression and activity in the liver, which was unresponsive to nutrient stimulation, and decreased expression in the islet due to the reduced number of β-cells. Gck activation substantially ameliorated hyperglycemia in pdx1 mutants, without inducing oxidative stress responses in liver or islet. In-depth characterization of Gck activity and regulation at the cellular level in a whole-organism diabetes model clarifies its applicability as a drug target for therapies.

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Diabetes Mellitus / drug therapy
  • Diabetes Mellitus / genetics
  • Diabetes Mellitus / metabolism
  • Disease Models, Animal
  • Glucokinase* / genetics
  • Glucokinase* / metabolism
  • Homeodomain Proteins
  • Hypoglycemic Agents / pharmacology
  • Hypoglycemic Agents / therapeutic use
  • Liver / drug effects
  • Liver / metabolism
  • Trans-Activators / genetics
  • Trans-Activators / metabolism
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism
  • Zebrafish*

Substances

  • Glucokinase
  • pancreatic and duodenal homeobox 1 protein
  • Zebrafish Proteins
  • Trans-Activators
  • Hypoglycemic Agents
  • Homeodomain Proteins