Gamma-aminobutyric acid type A receptor (GABAAR) modulators are crucial in treating neurological and psychiatric disorders, including epilepsy, anxiety, insomnia, and depression. This review examines the synthetic approaches and clinical applications of representative small-molecule GABAAR modulators. Benzodiazepines, such as Diazepam, are well-known positive allosteric modulators (PAMs) that enhance GABAAR function, providing therapeutic effects but also associated with side effects like sedation and dependence. Non-benzodiazepine modulators, including Z-drugs like Zolpidem and Zaleplon, offer improved selectivity for the α1 subunit of GABAAR, reducing some of these side effects. Neurosteroids such as allopregnanolone and its synthetic analogs, including Brexanolone, have emerged as potent GABAAR modulators with applications in conditions like postpartum depression and refractory epilepsy. Advances in molecular biology and pharmacology have facilitated the development of isoform-specific modulators, potentially reducing off-target effects and enhancing therapeutic profiles. Additionally, combining GABAAR modulators with other therapeutic agents has shown promise in enhancing efficacy and minimizing side effects. This review highlights the design strategies, pharmacodynamics, clinical efficacy, and safety profiles of these compounds, emphasizing the opportunities for developing novel GABAAR modulators with improved therapeutic outcomes.
Keywords: Clinical applications; Drugs; GABA(A)R modulators; Neurological disorders; Synthetic approaches.
Copyright © 2024 Elsevier Inc. All rights reserved.