To assess the preliminary therapeutic impact of a novel treatment, futility monitoring is commonly employed in Phase II clinical trials to facilitate informed decisions regarding the early termination of trials. Given the rapid evolution in cancer treatment development, particularly with new agents like immunotherapeutic agents, the focus has often shifted from objective response to time-to-event endpoints. In trials involving multiple time-to-event endpoints, existing monitoring designs typically select one as the primary endpoint or employ a composite endpoint as the time to the first occurrence of any event. However, relying on a single efficacy endpoint may not adequately evaluate an experimental treatment. Additionally, the time-to-first-event endpoint treats all events equally, ignoring their differences in clinical priorities. To tackle these issues, we propose a Bayesian futility monitoring design for a two-arm randomized Phase II trial, which incorporates the win ratio approach to account for the clinical priority of multiple time-to-event endpoints. A joint lognormal distribution was assumed to model the time-to-event variables for the estimation. We conducted simulation studies to assess the operating characteristics of the proposed monitoring design and compared them to those of conventional methods. The proposed design allows for early termination for futility if the endpoint with higher clinical priority (e.g., death) deteriorates in the treatment arm, compared to the time-to-first-event approach. Meanwhile, it prevents an aggressive early termination if the endpoint with lower clinical priority (e.g., cancer recurrence) shows deterioration in the treatment arm, offering a more tailored approach to decision-making in clinical trials with multiple time-to-event endpoints.
Keywords: Bayesian futility monitoring; Gibbs sampling; multiple time‐to‐event endpoints; two‐arm Phase II clinical trial; win ratio.
© 2024 John Wiley & Sons Ltd.