Cancer immunotherapy has made great progress in effectively attacking or eliminating cancer. However, the challenges posed by the low reactivity of some solid tumors still remain. Macrophages, as a key component of the tumor microenvironment (TME), play an important role in determining the progression of solid tumors due to their plasticity and heterogeneity. Targeting and reprogramming macrophages in TME to desired phenotypes offers an innovative and promising approach for cancer immunotherapy. Meanwhile, the rapid development of in vivo molecular imaging techniques provides us with powerful tools to study macrophages. In this review, we summarize the current progress in macrophage reprogramming from conceptual roadmaps to therapeutic approaches, including monoclonal antibody drugs, small molecule drugs, gene therapy, and chimeric antigen receptor-engineered macrophages (CAR-M). More importantly, we highlight the significance of molecular imaging in observing and understanding the process of macrophage reprogramming during cancer immunotherapy. Finally, we introduce the therapeutic applications of imaging and reprogramming macrophages in three solid tumors. In the future, the integration of molecular imaging into the development of novel macrophage reprogramming strategies holds great promise for precise clinical cancer immunotherapy.
Keywords: Imaging techniques; Immunotherapy; Macrophage reprogramming; Polarized phenotypes; Solid tumors.
© International Human Phenome Institutes (Shanghai) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.