Single-Pass Demonstration of Integrated Capture and Catalytic Conversion of CO2 from Simulated Flue Gas to Methanol in a Water-Lean Carbon Capture Solvent

ACS Omega. 2024 Nov 4;9(46):46247-46262. doi: 10.1021/acsomega.4c06919. eCollection 2024 Nov 19.

Abstract

Here, we demonstrate an integrated semibatch simultaneous CO2 capture and conversion to methanol process using a water-lean solvent, N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA), that serves as both the capture solvent and subsequent condensed-phase medium for the catalytic hydrogenation of CO2. CO2 is captured from simulated coal-derived flue gas at a target >90 mol % capture efficiency, with a continuous slipstream of CO2-rich solvent delivered to a fixed bed catalytic reactor for catalytic hydrogenation. A single-pass conversion rate >60 C-mol % and selectivity >80 C-mol % are observed for methanol at relatively low temperatures (<200 °C) in the condensed phase of the carbon capture solvent. Hydrogenation products also include higher alcohols (e.g., ethanol and propanol) and hydrocarbons (e.g., methane and ethane), suggesting that multiple products could be made offering adaptability with varied CO2-derived products. Catalyst activity and selectivity are directly impacted by the water content in the capture solvent. Anhydrous operation provides high catalyst activity and productivity, suggesting that water management will be a critical parameter in real-world operation. Ultimately, we conclude that the integrated capture and catalytic hydrogenation of CO2 are chemically viable and potentially more energetically efficient and cost-effective than conventional separate capture and conversion approaches.