Molecular docking stands as a pivotal element in the realm of computer-aided drug design (CADD), consistently contributing to advancements in pharmaceutical research. In essence, it employs computer algorithms to identify the "best" match between two molecules, akin to solving intricate three-dimensional jigsaw puzzles. At a more stringent level, the molecular docking challenge entails predicting the accurate bound association state based on the atomic coordinates of two molecules. This process assumes particular significance in unraveling the mechanistic intricacies of physicochemical interactions at the atomic scale. Notably, the application of docking, especially in the context of protein-small molecule interactions, holds wide-ranging implications for structure-based drug design, given the prevalent use of small compounds as drug candidates. This study provides an overview of docking methodologies, delves into recent key developments, elucidates the physicochemical underpinnings of molecular recognition in protein-ligand interactions, and concludes by addressing the applications of docking in virtual screening, alongside current challenges within existing docking methods.
Keywords: Free energy of binding; Molecular docking; Protein-ligand interactions; Structure-based drug design; Virtual screening.