Infant skull fractures align with the direction of bone mineralization

Biomech Model Mechanobiol. 2024 Nov 25. doi: 10.1007/s10237-024-01902-x. Online ahead of print.

Abstract

The geometry and mechanical properties of infant skull bones differ significantly from those of adults. Over the past decades, debates surrounding whether fractures in infants come from deliberate abuse or accidents have generated significant impacts in both legal and societal contexts. However, the etiology of infant skull fractures remains unclear, which motivates this study with two main components of work. Firstly, we present and implement a progressive unidirectional fabric composite damage model for infant cranial vaults to represent ductile and anisotropic properties-two typical mechanical characteristics of infant skulls. Secondly, we hypothesize that these intrinsic material properties cause injuries perpendicular to the fiber direction to dominate infant skull fractures, resulting in fracture lines that align with the direction of mineralization in the infant skull. The material model and the finite element (FE) model were verified hierarchically, and this hypothesis was verified by reconstructing two legal cases with known fall heights and implementing the above damage model into CT-based subject-specific infant FE head models. We discovered that the infant skull is more susceptible to injuries within planes perpendicular to the mineralization direction because of the anisotropic mechanical property caused by the direction of mineralization, leading to infant skull fractures aligning with the mineralization direction. Our findings corroborated the several previously reported observations of fractures on cranial vaults, demonstrating that these fractures were closely associated with sutures and oriented along the mineralization direction, and revealed the underlying mechanisms of infant skull fracture pattern. The modeling methods and results of this study will serve as an anchor point for more rigorous investigations of infant skull fractures, ultimately aiming to provide convincing biomechanical evidence to aid forensic diagnoses of abusive head trauma.

Keywords: Abusive head trauma; Infant finite element model; Infant skull fracture; Progressive unidirectional fabric composite damage model.