Lateral flow rapid diagnostic tests (RDTs, RTs) are cost-effective with low infrastructure requirements for limited-resource settings, and in any setting can represent a bridge between early disease monitoring at outbreak onset and fully-scaled molecular testing for human or animal diseases. However, the potential of RTs to handle higher throughput testing is hampered by the need for manual processing. Here we review dengue virus and African swine fever virus rapid tests, and present a novel protocol that employs an open-source fluid handler to automate the execution of up to 42 RTs per run. A publicly accessible website, rtWIZARD.lji.org, provides printouts for correctly spacing cassettes, worksheets for sample organization, and test-specific fluid handler protocols to accurately deliver samples from a 48-tube rack to each cassette's sample and running buffer wells. An optional QR-coded sheet allows for de-identified sample-to-result traceability by producing a unique printable label for each cassette, enabling results to be entered via a scanner. This work describes a highly cost-effective model for increasing outbreak diagnostic efficiency and of increasing RT throughput for other applications including workplace testing, food safety, environmental testing, and defense applications.
Copyright: © 2024 Laurent et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.