Heterologous Expression and Polyphasic Analysis of CLA-Converting Linoleic Acid Isomerase from Bifidobacterium breve JKL2022

J Agric Food Chem. 2024 Nov 25. doi: 10.1021/acs.jafc.4c05746. Online ahead of print.

Abstract

The probiotic Bifidobacterium breve is known for its efficient conjugated linoleic acid (CLA) conversion, yet their CLA conversion pathway remains underexplored. This study investigated B. breve JKL2022 for its CLA conversion in actively growing cells, washed cell states, and in crude protein extracts. Moreover, the study aimed to confirm the CLA-converting enzyme in strain JKL2022 and optimize its purification through heterologous expression of fusion proteins (LAI_sGFP and MBP_LAI). JKL2022 exhibited superior CLA conversion compared to genetically similar B. breve strains (JCM7017, JCM7019, JCM1192, and JCM1273), particularly the observed CLA conversion in washed cells (60.14 ± 7.60%) and crude protein fractions (96.11 ± 6.63%). The multipass transmembrane linoleic acid isomerase (LAI) was cloned into the E. coli BL21(DE3) as free LAI or modified with superfolder-GFP or MBP tags and expressed with 0.01 mM IPTG at 37 °C, resulting in highly active protein fractions. LAI was characterized by predictive modeling, molecular docking, and phylogenetic analyses. Moreover, reverse transcription-quantitative PCR analysis revealed upregulation (20-140× higher expression) of lai in JKL2022 compared with that in the JCM strains. Nevertheless, upscaling the production and purification of LAI for downstream applications remains a challenge, primarily because of their membrane-spanning configuration.

Keywords: Bifidobacterium breve; RT-qPCR; conjugated linoleic acid; fusion proteins; linoleic acid isomerase; membrane-spanning enzyme.