Digital cameras are limited by a narrow field of view and a large photosensitive unit, resulting in images with a small frame size and low resolution. This reduces the acquisition range and measurement accuracy of stereo vision in close-range photogrammetry, making it difficult to meet the requirements for precise close-range photogrammetry in high-precision industrial engineering fields, and limiting the significant development of digital close-range photogrammetry. For this reason, based on the characteristics of ground close-range photogrammetry, this paper proposes a large-format image acquisition method for rotating cameras. By designing a simple and structurally relaxed rotating camera, a rigorous seamless stitching model for large-format images is constructed, forming a large-format equivalent central projection image acquisition mechanism that meets the requirements of precise close-range photogrammetry. Finally, the effectiveness of the proposed method is verified through experiments. The results show that the proposed method effectively increases the coverage of a single camera station. The large-format image obtained through three degrees of rotation increases the image size from 916 × 687 pixels in a single image to 4977 × 671 pixels in a large-format image. This method solves the problem of the small view field of digital cameras, complementing the theory of precision close-range photogrammetry and providing necessary theoretical support for technological development in the field of precision industrial engineering.
Keywords: Close-range photogrammetry; Large-field image; Rotating camera; Seamless stitching.
© 2024. The Author(s).