Tumor cells are characterized by rapid proliferation. In order to provide purines for DNA and RNA synthesis, inosine 5'-monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo guanosine biosynthesis, is highly expressed in tumor cells. In this study we investigated whether IMPDH was involved in cancer immunoregulation. We revealed that the IMPDH inhibitors AVN944, MPA or ribavirin concentration-dependently upregulated PD-L1 expression in non-small cell lung cancer cell line NCI-H292. This effect was reproduced in other non-small cell lung cancer cell lines H460, H1299 and HCC827, colon cancer cell lines HT29, RKO and HCT116, as well as kidney cancer cell line Huh7. In NCI-H292 cells, we clarified that IMPDH inhibitors increased CD274 mRNA levels by enhancing CD274 mRNA stability. IMPDH inhibitors improved the affinity of the ARE-binding protein HuR for CD274 mRNA, thereby stabilizing CD274 mRNA. Guanosine supplementation abolished the IMPDH inhibitor-induced increase in PD-L1 expression. In CT26 and EMT6 tumor models used for ICIs based studies, we showed that despite its immunosuppressive properties, the IMPDH inhibitor mycophenolate mofetil did not reduce the clinical response of checkpoint inhibitors, representing an important clinical observation given that this class of drugs is approved for use in multiple diseases. We conclude that PD-L1 induction contributes to the immunosuppressive effect of IMPDH inhibitors. Furthermore, the IMPDH inhibitor mycophenolate mofetil does not antagonize immune checkpoint blockade.
Keywords: HuR; IMPDH inhibitors; PD-L1; immune checkpoint blockade; mRNA stability; non-small cell lung.
© 2024. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.