With the advent of artificial intelligence (AI), it is now possible to design diverse and novel molecules from previously unexplored chemical space. However, a challenge for chemists is the synthesis of such molecules. Recently, there have been attempts to develop AI models for retrosynthesis prediction, which rely on the availability of a high-quality training dataset. In this work, we explore the suitability of large language models (LLMs) for extraction of high-quality chemical reaction data from patent documents. A comparative study on the same set of patents from an earlier study showed that the proposed automated approach can enhance the current datasets by addition of 26% new reactions. Several challenges were identified during reaction mining, and for some of them alternative solutions were proposed. A detailed analysis was also performed wherein several wrong entries were identified in the previously curated dataset. Reactions extracted using the proposed pipeline over a larger patent dataset can improve the accuracy and efficiency of synthesis prediction models in future.Scientific contributionIn this work we evaluated the suitability of large language models for mining a high-quality chemical reaction dataset from patent literature. We showed that the proposed approach can significantly improve the quantity of the reaction database by identifying more chemical reactions and improve the quality of the reaction database by correcting previous errors/false positives.
Keywords: Chemical reactions; Dataset construct; Large language models; Patents; Reaction mining.
© 2024. The Author(s).