This study explores the functional attributes of Lactiplantibacillus plantarum (L. plantarum) strains isolated from fermented tomato juice, focusing on their physiological, biochemical, and probiotic characteristics. The identified 66 gram-positive strains included 36 L. plantarum ones, which exhibited robust growth in acidic environments (pH 2.0-5.0) and utilization of various carbohydrates. Notably, seven strains outperformed a commercial strain in extreme acidic conditions. Antioxidant activity varied, with strain A24 showing the highest hydroxyl radical scavenging ability, while strains with high surface hydrophobicity had lower DPPH scavenging activity, indicating no direct correlation between these properties. Strains also showed strain-specific differences in carbohydrate utilization and antibiotic resistance, with some resistant to gentamicin and ciprofloxacin. Survival rates under simulated gastrointestinal conditions were strain-specific, with some strains demonstrating high survival rates, indicating their potential as probiotics. Furthermore, 13 strains used as fermentation starters in tomato juice significantly enhanced antioxidant activity and reduced pH and total soluble solids, indicating efficient sugar utilization and lactic acid production. These findings suggest that L. plantarum strains are well-suited for functional food fermentation and probiotic applications, with strain-specific traits offering versatility for use in acidic food products and probiotic formulations.
Keywords: Lactiplantibacillus plantarum; acid tolerance; antibiotic resistance; antioxidant activity; carbohydrate utilization; probiotic potential; tomato fermented juice.