Multimodal MRI and 1H-MRS for Preoperative Stratification of High-Risk Molecular Subtype in Adult-Type Diffuse Gliomas

Diagnostics (Basel). 2024 Nov 15;14(22):2569. doi: 10.3390/diagnostics14222569.

Abstract

Isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA methyltransferase (MGMT) genes are critical molecular markers in determining treatment options and predicting the prognosis of adult-type diffuse gliomas. Objectives: this study aimed to investigate whether multimodal MRI enables the differentiation of genotypes in adult-type diffuse gliomas. Methods: a total of 116 adult-type diffuse glioma patients (61 males, 51.5 (37, 62) years old) who underwent multimodal MRI before surgery were retrospectively analysed. Multimodal MRI included conventional MRI, proton magnetic resonance spectroscopy (1H-MRS), and diffusion tensor imaging (DTI). Conventional visual features, N-acetyl-aspartate (NAA)/Creatine (Cr), Choline (Cho)/Cr, Cho/NAA, fractional anisotropy (FA), mean diffusivity (MD), and diffusion histogram parameters were extracted on the whole tumour. Multimodal MRI parameters of IDH-mutant and IDH-wildtype gliomas were compared using the Mann-Whitney U test, Student's t-test, or Pearson chi-square tests. Logistic regression was used to select the MRI parameters to predict IDH-mutant gliomas. Furthermore, multimodal MRI parameters were selected to establish models for predicting MGMT methylation in the IDH-wildtype gliomas. The performance of models was evaluated by the receiver operating characteristics curve. Results: a total of 56 patients with IDH-mutant gliomas and 60 patients with IDH-wildtype glioblastomas (GBM) (37 with methylated MGMT and 17 with unmethylated MGMT) were diagnosed by 2021 WHO classification criteria. The enhancement degree (OR = 4.298, p < 0.001), necrosis/cyst (OR = 5.381, p = 0.011), NAA/Cr (OR = 0.497, p = 0.037), FA-Skewness (OR = 0.497, p = 0.033), MD-Skewness (OR = 1.849, p = 0.035), FAmean (OR = 1.924, p = 0.049) were independent factors for the multimodal combined prediction model in predicting IDH-mutant gliomas. The combined modal based on conventional MRI, 1H-MRS, DTI parameters, and histogram performed best in predicting IDH-wildtype status (AUC = 0.890). However, only NAA/Cr (OR = 0.17, p = 0.043) and FA (OR = 0.38, p = 0.015) were associated with MGMT methylated in IDH-wildtype GBM. The combination of NAA/Cr and FA-Median is more accurate for predicting MGMT methylation levels than using these elements alone (AUC, 0.847 vs. 0.695/0.684). Conclusions: multimodal MRI based on conventional MRI, 1H-MRS, and DTI can provide compound imaging markers for stratified individual diagnosis of IDH mutant and MGMT promoter methylation in adult-type diffuse gliomas.

Keywords: O6-methylguanine DNA-methyltransferase; diffusion tensor imaging; gliomas; isocitrate dehydrogenase; magnetic resonance spectroscopy.