A Comparative Metabolomics Study of the Potential Marker Compounds in Feces from Different Hybrid Offspring of Huainan Pigs

Animals (Basel). 2024 Nov 14;14(22):3282. doi: 10.3390/ani14223282.

Abstract

As a notable native Chinese genetic population, the Huainan pig has an exceptional meat quality but a low percentage of lean meat and subpar genetic performance. To better exploit the superior genetic traits of the Huainan pig and address knowledge gaps regarding the optimization of its hybrid offspring, this study used Huainan pigs as the maternal line and bred them with Yorkshire, Landrace, and Berkshire sires. This approach produced three hybrid combinations: Yorkshire × Huainan (YH), Landrace × Huainan (LH), and Berkshire × Huainan (BH). The body size, fat ratio, and average backfat thickness of these hybrid progeny were evaluated under the same feeding management and nutritional circumstances. The results revealed that the average backfat thickness of YH was significantly lower than that of LH and BH. In order to better understand the causes of these variations, fecal samples were taken from three pigs in each group for metabolomic analysis. A total of 2291 metabolites were identified, including benzene derivatives (16.6%), amino acids and their metabolites (14.5%), and organic acids (13.4%), with pyruvaldehyde and norethindrone acetate elevated in YH compared to LH and BH. In addition, the three hybrid pig groups commonly exhibited differences in the "glycerophospholipid metabolism" pathway. This variation may also contribute to differences in their fat ratio and backfat thickness. Our findings provide a novel perspective on the role of hybrid vigor in advancing the genetic population of Huainan pigs, while also revealing the unique metabolic characteristics of the YH with regard to fat deposition. This study is expected to enhance the conservation and effective utilization of genetic resources within the Huainan pig population.

Keywords: Huainan pig; LC-MS; fecal metabolite; hybridization; untargeted metabolomics.