Deep Learning and IoT-Based Ankle-Foot Orthosis for Enhanced Gait Optimization

Healthcare (Basel). 2024 Nov 14;12(22):2273. doi: 10.3390/healthcare12222273.

Abstract

Background/objectives: This paper proposes a method for managing gait imbalances by integrating the Internet of Things (IoT) and machine learning technologies. Ankle-foot orthosis (AFO) devices are crucial medical braces that align the lower leg, ankle, and foot, offering essential support for individuals with gait imbalances by assisting weak or paralyzed muscles. This research aims to revolutionize medical orthotics through IoT and machine learning, providing a sophisticated solution for managing gait issues and enhancing patient care with personalized, data-driven insights.

Methods: The smart ankle-foot orthosis (AFO) is equipped with a surface electromyography (sEMG) sensor to measure muscle activity and an Inertial Measurement Unit (IMU) sensor to monitor gait movements. Data from these sensors are transmitted to the cloud via fog computing for analysis, aiming to identify distinct walking phases, whether normal or aberrant. This involves preprocessing the data and analyzing it using various machine learning methods, such as Random Forest, Decision Tree, Support Vector Machine (SVM), Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and Transformer models.

Results: The Transformer model demonstrates exceptional performance in classifying walking phases based on sensor data, achieving an accuracy of 98.97%. With this preprocessed data, the model can accurately predict and measure improvements in patients' walking patterns, highlighting its effectiveness in distinguishing between normal and aberrant phases during gait analysis.

Conclusions: These predictive capabilities enable tailored recommendations regarding the duration and intensity of ankle-foot orthosis (AFO) usage based on individual recovery needs. The analysis results are sent to the physician's device for validation and regular monitoring. Upon approval, the comprehensive report is made accessible to the patient, ensuring continuous progress tracking and timely adjustments to the treatment plan.

Keywords: Internet of Things; ankle–foot orthosis; good health and well-being; healthcare; machine learning; wearable device.