Advances in Targeted Microbeam Irradiation Methods for Live Caenorhabditis elegans

Biology (Basel). 2024 Oct 24;13(11):864. doi: 10.3390/biology13110864.

Abstract

Charged-particle microbeam irradiation devices, which can convert heavy-ion or proton beams into microbeams and irradiate individual animal cells and tissues, have been developed and used for bioirradiation in Japan, the United States, China, and France. Microbeam irradiation technology has been used to analyze the effects of irradiation on mammalian cancer cells, especially bystander effects. In 2006, individual-level microbeam irradiation of the nematode Caenorhabditis elegans was first realized using JAEA-Takasaki's (now QST-TIAQS's) TIARA collimated microbeam irradiation device. As of 2023, microbeam irradiation of C. elegans has been achieved at five sites worldwide (one in Japan, one in the United States, one in China, and two in France). This paper summarizes the global progress in the field of microbeam biology using C. elegans, while focusing on issues unique to microbeam irradiation of live C. elegans, such as the method of immobilizing C. elegans for microbeam experiments.

Keywords: Caenorhabditis elegans; anesthesia-free; heavy ion; immobilization; microbeam; microfluidic chip; proton.

Publication types

  • Review