In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride

Polymers (Basel). 2024 Nov 12;16(22):3147. doi: 10.3390/polym16223147.

Abstract

Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene-maleic anhydride copolymer (PA12-g-SMA), which possesses high compatibility and crystallinity, effectively improving the crystallinity to 15.1%, the impact strength to 61.03 kJ/m2, and the degradation temperature of PVC to 267 °C through a single and straightforward processing step. Additionally, after the introduction of two different fluorescent sensors in PA12-g-SMA and PVC, the interfacial layer of the induced crystallization can be monitored in situ via a confocal laser scanning microscope (CLSM). This study highlights a rare strategy for significantly enhancing the physical properties of rigid PVC through simply adding a polymeric nucleating agent during processing, while also emphasizing the importance of visualizing the interfacial layer to understand various polymer crystallization processes.

Keywords: fluorescent sensors; induced crystallization; interfacial layer; nucleating agent; polyvinyl chloride.