Degradation Kinetics and Mechanism of β-Cypermethrin and 3-Phenoxybenzoic Acid by Lysinibacillus pakistanensis VF-2 in Soil Remediation

J Agric Food Chem. 2024 Nov 27. doi: 10.1021/acs.jafc.4c08344. Online ahead of print.

Abstract

Pyrethroid pesticide residues have detrimental effects on soil ecology and crop growth during insecticidal operations in agriculture. In this study, a novel strain Lysinibacillus pakistanensis VF-2 was isolated from long-term pesticide-treated cropland and had a maximum degradation efficiency of 81.66% for synthetic pyrethroid β-cypermethrin (β-CY) under optimized conditions. The analysis of intermediate products revealed that the degradation pathway of β-CY mainly involves ester bond hydrolysis, diphenyl ether decomposition, and phthalate ester degradation. Whole-genome sequencing and RT-qPCR analysis revealed the involvement of carboxylesterases, dioxygenases, and aromatic compound degrading enzymes in the degradation of β-CY. In the soil bioaugmentation experiment, the strain VF-2 can synergistically interact with indigenous microorganisms, significantly enhancing the degradation efficiency of β-CY and its metabolite 3-phenoxybenzoic acid (3-PBA) from 17.08% and 7.62% to 73.46% and 62.29%, respectively. This study suggests that strain VF-2 is a promising candidate for in situ coremediation of pyrethroid and intermediate metabolite residues in soil.

Keywords: Beta-cypermethrin; Lysinibacillus; Pesticide residues; Soil remediation; Whole genome.