Atomic Zn-N4 Site-Regulated Donor-Acceptor Catalyst for Boosting Photocatalytic Bactericidal Activity

Nano Lett. 2024 Nov 27. doi: 10.1021/acs.nanolett.4c03853. Online ahead of print.

Abstract

Reactive oxygen species (ROS)-mediated photocatalytic antibacterial materials are emerging as promising alternatives for the antibiotic-free therapy of drug-resistant bacterial infections. However, the overall efficiency of photocatalytic sterilization is restricted by the rapid recombination of the charge carriers. Herein, we design an in-plane π-conjugated donor-acceptor (D-A) system (g-C3N4-Zn-NC), comprising graphitic carbon nitride (g-C3N4) as the donor and Zn single-atom anchored nitrogen-doped carbon (Zn-NC) as the acceptor. Experimental and theoretical results reveal that the introduction of Zn-NC induces the formation of an intermediate band in g-C3N4-Zn-NC, extending the spectral absorption range and facilitating charge carrier transfer and separation. Additionally, the synergistic effects of the dual sites, the N═C-N sites of the g-C3N4 "donor" and the atomic Zn-N4 sites of the Zn-NC "acceptor", boost ROS production. Consequently, the biocompatible g-C3N4-Zn-NC effectively kills methicillin-resistant Staphylococcus aureus (MRSA) under visible-light irradiation and promotes the healing of MRSA-infected wounds on mouse skin.

Keywords: donor−acceptor system; dual sites; photocatalysis; single atom; sterilization.