Interferon-inducible transmembrane (IFITM) proteins are broad-spectrum antiviral factors that confer cellular resistance to virus invasion. α/β-Hydrolase domain-containing 16A (ABHD16A) has recently been identified as a novel depalmitoylase that can inhibit the antiviral activity of IFITM proteins by catalyzing the depalmitoyl reaction; this pattern may be crucial for the host to avoid damage caused by excessive immune response. However, it remains largely elusive about how host cells regulate the activity of ABHD16A. In the present study, we performed the AlphaFold2-based protein-protein interaction prediction and identified swine E3 ubiquitin ligase ring finger protein 5 (sRNF5) as a sABHD16A-interacting protein and negatively regulated the stability of sABHD16A. Using immunofluorescence and co-immunoprecipitation techniques, we uncovered that sRNF5 targeted sABHD16A for ubiquitination and degradation via the proteasomal pathway at residues K3 and K452. Furthermore, sABHD16A catalyzed the depalmitoylation of sIFITM1, which obstructed the antiviral function of sIFITM1, while sRNF5 caused ubiquitination of sABHD16A, which attenuated the depalmitoylation effect on sIFITM1, and consequently restored the antiviral activity of sIFITM1. Collectively, our findings demonstrate for the first time that sRNF5 positively regulates the antiviral function of sIFITM1 by mediating the degradation of sABHD16A, which expands the biological functions of RNF5 and ABHD16A in immune regulation. Moreover, our work highlights the well-designed interplay between RNF5, ABHD16A, and IFITM, which balances antiviral immune responses to avoid the disorders induced by excessive immune response.
Importance: Interferon and interferon-stimulated genes play significant and protective roles in the host's defense against viral infection. IFITM family proteins, which can be strongly induced by interferon, have been identified as the first line of defense to prevent invasion of various viruses. Further analysis reveals the antiviral activity of IFITMs depends on palmitoylation/depalmitoylation. Recently, we reported that ABHD16A, as the first depalmitoylase of IFITMs, negatively regulated the antiviral activity of IFITMs. However, these raise crucial questions: how ABHD16A is regulated and remained in a balanced manner? Here, we show that swine RNF5 attenuates the negative regulation of sIFITM1 against virus invasion by modifying sABHD16A through ubiquitination and guiding sABHD16A for degradation. Thus, sRNF5-sABHD16A interplay plays an indispensable role in regulating immune response and avoiding the disorders induced by elevated interferon levels. Overall, our findings extend the upstream subtle regulatory molecular mechanism of IFITMs and provide potential targets for viral disease therapy.
Keywords: ABHD16A; IFITM; RNF5; post-translational modification; virus infection.