Doping the π-frameworks of polycyclic aromatic hydrocarbons (PAHs) with main-group elements is a powerful strategy to manipulate optoelectronic properties. Herein, the benzylic carbons of π-bowl sumanene are replaced with chalcogens (S, Se, and Te) and trivalent phosphorus (PIII), affording a series of PIII-doped heterosumanenes (HSEs). The lone-pair electrons of the PIII-dopant endow these HSEs with pronounced affinity toward transition metals (Au+, Pt2+, and Pd2+). Accordingly, nine coordination complexes were synthesized to exhibit diverse coordination patterns contingent upon the metal ions and chalcogen atoms on HSEs. For the first time, we proved that the Pd2+ complexes of these HSEs are promising catalysts for the Suzuki-Miyaura coupling reaction of aryl chlorides.