Blue honeysuckle, a new berry with high nutritional value, possesses typical berry postharvest properties, including extreme perishability, rapid quality loss, and high sensitivity to microbial infections. At present, the underlying mechanisms of postharvest quality deterioration, senescence, and low-temperature regulation remain largely unknown. This study aimed to elucidate the metabolic shifts and genetic regulation underlying the preservation or deterioration of blue honeysuckle during storage at room temperature (25 °C) and low temperature (4 °C). Storage at 4 °C inhibited fruit decay and preserved better visual quality, weight, firmness, and total soluble solid and acid contents. We identified 24 key differentially accumulated metabolites that specifically changed during the qualitative shift at room temperature and were effectively regulated by 4 °C. Commonly associated metabolites, sorbitol, succinic acid, malic acid, naringenin, pinobanksin, and taxifolin, characterize the deterioration of blue honeysuckle. These metabolites were integrated with transcriptomic data for weighted correlation network analysis (WGCNA). Regulatory networks were used for the identification of key genes and transcription factors (TFs) influencing sugar, organic acid, flavonoid, and phenolic acid metabolism during storage. The findings provide insight into metabolic regulation and the improvement of flavor in postharvest blue honeysuckle fruit.
Keywords: Blue honeysuckle; Metabolomic; Postharvest storage; Transcriptomic.
Copyright © 2024. Published by Elsevier B.V.