Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions.
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.