Acoustics is most effective in undersea detection, localization, and communication. Establishment of a global climatological dataset of undersea acoustic parameters becomes urgent. In building such a dataset, first we use the Thermodynamic Equation of Seawater-2010 (TEOS-10) to calculate the sound speed (SS) from the gridded temperature and salinity fields of the NOAA/NCEI World Ocean Atlas 2023. Second, we determine the depth of overall minimum from SS profile as the deep sound channel (DSC) axis depth, the depth of overall maximum between the surface and DSC axis as the sonic layer depth (SLD), the depth of the local minimum between SLD and DSC axis as the second sound channel (SSC) depth, and the depth with the SS equalling the maximum SS as the critical depth. Third, we obtain the SS at the surface, SLD, DSC axis, and SSC axis. Fourth, we determine the other acoustic parameters such as In-layer gradient, below layer gradient, DSC strength, SSC strength, depth excess, and surface duct cut-off frequency. The dataset is publicly available.
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.