Dynamic disassembly and reconstruction of the nuclear lamina during entry and exit of mitosis, respectively, are pivotal steps in proliferation of higher eukaryotic cells. Although numerous post-translational modifications of lamin proteins have been identified, key factors driving the nuclear lamina dynamics remain elusive. Here we identified CDK1-elicited phosphorylation sites on endogenous Lamin A/C and characterized their functions in regulation of the nuclear lamina. Specifically, mass spectrometry revealed CDK1-mediated phosphorylation of Lamin A/C at the N-terminal Thr19/Ser22 and the C-terminal Ser390/Ser392 during mitosis. Importantly, the phospho-mimicking 4D mutant T19D/S22D/S390D/S392D completely disrupted Lamin A filamentous structure in interphase cells. Conversely, the non-phosphorylatable mutant T19A/S22A and especially the 4A mutant T19A/S22A/S390A/S392A protected Lamin A from depolymerization during mitosis. These results suggest that phosphorylation and dephosphorylation of both N- and C-terminal sites regulate the nuclear lamina dynamics. Engineering the non-phosphorylatable mutant T19A/S22A into the endogenous LMNA gene resulted in nuclear abnormalities and micronucleus formation during telophase. Perturbation of the Lamin A phosphorylation is shown to prevent proper nuclear envelope dynamics and impair nuclear integrity. These findings reveal a previously undefined link between the CDK1-elicited Lamin A phosphorylation dynamics, nuclear envelope plasticity, and genomic stability during the cell cycle.
Keywords: CDK1; Lamin A; mitosis; nuclear integrity; phosphorylation.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.