Intraspecific phenotypic variation can be used as a window into the ecological differences among individuals of a species and lead to a better understanding of adaptive evolution. Adaptive traits, such as venom, that play an important ecological role for a species are useful models for understanding the sources of intraspecific variation. Intraspecific studies on front-fanged venomous snakes have offered deeper insights into the diverse mechanisms and adaptations that support the effectiveness of venom across species. Despite the extensive research on front-fanged venomous snakes, rear-fanged snakes, representing two-thirds of all snake species, have been largely overlooked. To test for sex and age-based intraspecific venom variation, we sequenced the messenger RNA from the Duvernoy's gland of 9 male and 10 female Common Garter Snakes, Thamnophis sirtalis, of different sizes from a single location. Our data represent the most venom gland transcriptomes of any venomous snake species from a single location and represent the first Duvernoy's venom gland transcriptomes for Thamnophis sirtalis. We found four toxin families dominate the Thamnophis sirtalis transcriptome: Snake Venom Metalloproteinases (SVMPs), Three-finger toxins (3FTxs), Cysteine-Rich Secretory Proteins (CRISPs), and C-type lectins (CTLs). Thamnophis sirtalis exhibits a unique balance in toxin expression, with approximately 30% each of neurotoxic (3FTx-dominated) and enzymatic (SVMP-dominated) components. No other published RFS Duvernoy's gland transcriptome displays this ratio, rather they are dominated by one or the other. Additionally, venom expression varies with sex and size, with differences in toxin gene expression between males and females as they grow. Our study provides new insights on venom composition in a RFS species and highlights the amount of intraspecific variation possible among individuals from a single population.
Keywords: Ontogeny; Rear-fanged snake; Sexual dimorphism; Snake venom metalloproteinases (SVMP); Three-finger toxin (3FTx); Transcriptomics.
Copyright © 2024 Elsevier Ltd. All rights reserved.